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physical quantities (the term ‘relation’ being used instead of 
speaking about ‘groups of groups’); e.g., one would find that 

x,x:x;’ = 1 

constitutes a simple relation. Once again, one could write 
down the set of all simple relations and continue with the 
hierarchy of groups, relations, and so on. However, this 
procedure seems to be a delicacy for the mathematically 
interested reader only. 

Finally, a remark about the boundaries of dimensional 
analysis is due. Taking a triplet oflinearly independent groups, 
see equation (18), e.g. {X,, X,, X,}, by dimensional analysis 
we only know that there is a functional relationship between 
the groups considered, say 

f(X,,X,,X,) = 0. 

Only further investigations (experimental or theoretical) can 
give more information about the actual form of this 
relationship. 
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APPENDIX: EXAMPLE FOR A GROUP 
THAT IS NOT SIMPLE 

A nonsimple group might be character&d in such a way 
that it can always be ‘simplified’, i.e. roughly speaking, by 
omittingsomeofthephysicalquantitiesoccurringinit, the rest 
will constitute a simple group ; e.g., in the former example, a 
nonsimple group is the following : 

X = AfA;‘A,‘A,A,. 

Check: x = [2, - 3,0, - 1, 1, l.lT is in fact a particular 
solution of equation (4) with (17). 

X can be simplified in several ways : 

(1) Deleting A,, the rest constitutes ‘Navier’. 
(2) Deleting A,, the rest constitutes ‘d’Alembert’. 
(3) Deleting A,, the rest constitutes ‘Poiseuille’. 
(4) Deleting A, and Ag, the rest constitutes ‘Froude’. 
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1. INTRODUCTION 

THIS PAPER describes an experimental and theoretical 
investigation of the heat transfer coefficient for a compressible, 
constant pressure, turbulent boundary layer on an isothermal 
flat plate. In the presence of large temperature differences 
between the freestream and the wall, the Nusselt number can 
be expected to depend on the ratio T,l?;,, due to 
compressibility effects and variations in gas properties with 
temperature through the boundary layer. At constant 
freestream Reynolds number, this is generally written in the 
form 

Nu = Nu,(T,/T,;,)“. 

There is a lack of experimental data in the literature, but 
reported analytical work for air tends to suggest a decrease in 
Nu with wall-to-gas temperature ratio. Kays and Crawford 
[1], for example, give a value for n of -0.4 for T,/T;, 7 1; 
Eckert’s reference temperature [2] corresponds to an 
exponent of -0.19 for the conditions investigated in this 
paper. Brown’s computations of flat plate heat transfer [3] 
also show a decrease of Nu with T,/rT;,, as do the turbulent 
heat transfer charts presented by Neal and Bertram [4]. Bose 
[S] solves the turbulent boundary-layer equations numeri- 
cally for 0.1 < TW/T,T;, < 0.9 and lists different St-Re 
correlations for the three temperature ratios which he 
considers. In all the cases described above, a negative value for 
the exponent n could be inferred. Previous experimental work 
at Oxford by Loftus and Jones [6] suggested that this effect 
was small. 

This paper examines the mechanisms for the dependence of 
Nusselt number on wall-to-gas temperature ratio. In addition, 
experimental results are presented for air at M = 0.55 and 
Re/m = 2.7 x 10’ m-t, for 0.5 c T,/7& < 1.3. This data is 
compared with numerical solutions of the turbulent, 
compressible boundary-layer equations using conventional 
mixing length turbulence models. 

2. ANALYTICAL DISCUSSION OF THE 
TEMPERATURE RATIO EFFECT 

Although the effect of the wall-to-gas temperature ratio is 
complicated, some understanding of possible mechanisms for 
producing such changes in the Nusselt number can be gained 
from a study of the laminar compressible boundary-layer 
equations, which for convenience can be considered in the 
simplified form 

p+(cpy = 0 

[(C/Pr)T’]‘+fT’+(y- l)Mz,CT,f”s = 0 1 
(1) 

with boundary conditions 

f(0) = f’(0) = 0, T(0) = T,, f’(m) = 1, T(W) = T, 

where 

’ = $, T = T(s), ‘I’ = &~m~co+mU-M, 

c = PPlPmP, 
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NOMENCLATURE 1 
C, specific heat at constant pressure 
k thermal conductivity [W m-l K-l] 

4 heat transfer [W m-‘1 
T temperature [K] 
U velocity [m s-‘1 
x distance down plate [ml. 

C 
e 
M 
NU 
Pr 
Re 
St 

Greek symbols 
p dynamic viscosity [kg m-l s-‘1 
Y kinematic viscosity [m2 s-‘1 

P density [kg m-‘] 
Y streamfunction [m* s-l]. 

Non-dimensional parameters 
a %/(c,%) 

PcplKwP, 
T/T, 
Mach number 
Nusselt number, q/[k,,(T,, - T,)] 
Prandtl number, p&/k 
Reynolds number, XV Jv 
Stanton number, Nu/(Pr Re) 
ratio of specific heats. Y 

Subscripts 
i incompressible constant property 
W evaluated at the wall 
too evaluated at total conditions in the freestream 

and the variable s is defined by 3. NUMERICAL INVESTIGATION 

s = JIP,~coM~w,)l 
s 

yP - dy. 
0 Pm 

It is easy to show from the above that for p = KT, where K is a 
constant, so that viscosity is assumed proportional to 
temperature, and arbitrary Prandtl number, the solution to 
the temperature equation is 

T/T, = 1 + Pr(y - l)M,$ ~~{mD~j+~ ] [f”(q)]*-P’dq dt 

In order to help understanding of the experimental results, a 
computer program was written in FORTRAN 77 to analyse 
the flow field numerically. The code was based on the non- 
similar, steady, compressible, turbulent boundary-layer 
programs of Cebeci [7], Cebeci and Smith [S] and Blottner 
[9], and applied to a flat plate flow with a constant freestream 
velocity. It was also assumed that the wall temperature was 
specified and constant. 

+B 
s 

m 
[f”(t)]” dt 

‘I 

where B is a constant. For Pr = 1, the Nusselt number is given 

by 

In order to produce a more computationally convenient set 
of equations, the boundary-layer equations were first 
transformed using Lees-Levy variables (see, for example Lees 
[lo] for an explanation of this transformation) to give 

2t;F,+Ir,+F=O 

2tFF, + VF, - (LF,), = 0 (5) 

2<F/3,+ V0,-(No,,), = a(L- M)Fi -aF(MF,), 

with boundary conditions 

q=O: F=V=O, O=T,JT, 

q-boo: F=B=l 

where 

F = uJU,, V = -J(2<)Y,, 0 = T/T,, 

L = C(l +E,,,/v), N = C(l/Pr+&,,/v), M = (C/V&J,-e,J 

= ,/(Re/2)f”(O)C,. (2) 

The momentum equation is merely the Blasius equation, so 
that in this case, there is no temperature ratio effect on the 
Nusselt number. 

If it is now assumed that C = g(T), where g is arbitrary, so 
that more complicated temperature-viscosity laws can be 
considered, the temperature equation has the solution 

T = Tm+~aTm(f’-f’2)+(Tw-T,)(1-j’). 

(assuming Pr = 1, although this analysis can be carried out if 
this is not the case). The expression for the Nusselt number is 
once again (2). However, the momentum equation satisfied byf 
is now no longer that of Blasius. If, for example, the viscosity 
law p cc T” is used for some a < 1, it can be seen that 

T ,“-I 
c= r 

0 m 

so that the momentum equation becomes 

~“+{[l+~a(f’-f’*)+(T,/T,-l)(l--f)]m-l~}’=O (3) 

with boundary conditions as in (1). This enablesf”(0) to be 
found by a regular perturbation analysis when 0 is close to 
unity so that (2) becomes 

Nu = 0.4946(Tw/T,)0~2411’m-“~(Re/2). (4) 

When the flow is turbulent, analysis is clearly far more 
complicated, but it seems plausible that the temperature ratio 
effect will be produced by a mechanism similar to that 
described above. 

This parabolic system of second-order equations was 
discretized directly using a Crank-Nicholson implicit scheme. 
In order to use the linearity of the temperature equation to its 
full advantage, the continuity and momentum equations were 
solved iteratively before the temperature equation, the cycle 
then being repeated until convergence was achieved. Since it 
was not envisaged that the program would be run at extreme 
gas temperatures, constant specific heats were used, and the 
viscosity was given by Sutherland’s law or a user-specified 
function.The Prandtl number variation with temperature was 
taken to be 0.72 [l-2.92 x 10-4(T-250)], obtained from 
data in [ll]. The turbulence model used was similar to that 
givenby Bose [S] whichisbasedonamixinglengththeoryand 
employs the concept of a turbulent Prandtl number to relate 
the eddy viscosity and eddy conductivity. Changing the 
turbulent Prandtl number model did not significantly affect 
the results. 

A comparison between laminar numerical calculations, 
using a viscosity-temperature relationship p cc T” for various 
values of m, and the analytical prediction (4) is given in Fig. 1. 
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Viscosity - Temperature Ratio Exponent m 

FIG. 1 

For a realistic viscosity-temperature law (for example, 
p a T”.76), the resulting Nusselt number exponent n is close to 
zero, showing that in the laminar case the effect of temperature 
ratio is small. Equivalent numerical calculations for the 
turbulent flow are also included in Fig. 1. In this case, for the 
same realistic viscosity-temperature law, the temperature 
ratio dependence is more pronounced. 

4. EXPERIMENTAL INVESTIGATION 

Experimental results were obtained for air flowing over a 
flat plate with zero pressure gradient using an Isentropic Light 
Piston Tunnel. This is a transient facility in which test gas is 
compressed in a tube by an air-driven piston before flowing 
through the working section at constant temperature and 
pressure. A comprehensive description of its operation can be 
found in [12] and [6]. 

The Reynolds number per metre was 2.7 x 107, and M = 
0.55. Three gas total temperatures, 280,365 and 500 K, were 
attained, the first by pre-cooling the test gas and the other 
two by changing the compression ratio in the pump tube. 
It was possible to pre-heat or pre-cool the flat plate by 
forced convection to give a range of wall temperatures 
300 < T, < 365 K and thus an overall temperature ratio 
0.60 < T,/‘& < 1.30. The boundary layer was tripped at 
Re = 5.4 x 105. 

Wall temperature and spanwise averaged heat transfer rates 
were measured using thin film gauges, the theory and use of 
which is described in [13]. Gas temperatures were measured 
using a fast response micro-thermocouple mounted in a 
stagnation probe. Data was acquired and processed on a PDP 
1 l/IO mini-computer. 

For a compressible flow with constant C,, constant Pr and a 
power law p a T” relating viscosity to temperature, it can be 

shown that at a given x position, 

4 

k&Y;, - T,) 
= constantf(T,/T,,) (6) 

where M, y and the unit Reynolds number are constant. This 
can be expressed as 

q/k,,T,, = constant (1 - T,IIT;,MW’I;,). (7) 

IfJ(T,I7;,) = 1, q/k,,7;, would vary linearly with T,/T,;, ; if 
not, any curvature could be approximated by a power law 

so that Nu = Nui(Tw/K;,)“. 
Figures 2(AHD) show experimental data presented in the 

manner of(7), where q/k,, zI;, is plotted against T,lT,;,. This is 
compared with numerical results given by the solid lines for 
four positions on the flat plate. Errors due to non-isothermal 
wall temperature distributions have been evaluated using the 
method described in [6] and were found to be typically of the 
order of 1%. The data clearly exhibits curvature, and 
representing the T,/K;, effect by a power law over this range, 
the experimental value ofn is between - 0.21 and - 0.28 for the 
x positions where measurements were taken. This shows no 
systematic variation with distance. Numerical calculations 
produce similar trends although the curvature is slightly less, 
with n ranging from -0.13 to -0.18 and increasing in 
magnitude with distance. 

5. CONCLUSIONS 

It has been shown numerically and experimentahy that the 
Nusselt number for a turbulent boundary layer exhibits a 
dependence on the wall-to-gas temperature ratio. Analysis of 
the laminar case reveals how this dependence relates to the 
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FIG. 2(B). 
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c> x = 70 MM 
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FIG. 2(C). 

Tw / Tt, 

FIG. 2(D). 
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variation of p and transport properties with temperature 
through the boundary layer. 

The authors suggest, on the basis of experimental data, the 
following turbulent boundary-layer relations for air in the 
range 0.6 i T,/7;, < 1.3: 

Nu = Nu~(T,/~&)-“~=~. (8) 

Outside this range, or for other gases, a numerical solution of 
the turbulent boundary-layer equations as described in this 
paper will give a good indication of the dependence of the 
Nusselt number on wall-to-gas temperature ratios. 
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INTRODUCTION 

INVESTIGATIONS on rotating systems have attained immense 
technological importance and, in that context, heat transfer 
systems from various types of axisymmetric bodies are 
presented in the literature Cl]. Kreith [2] investigated the 
problem of cones and disks in turbulent and mixed flow. 
Sparrow and Gregg [3] analysed theoretically the problem of 
laminar heat transfer from a rotating disk with suction applied 
to the wall. Their analysis was restricted purely to the forced 
convective conditions and buoyancy effects were not 
considered. Hartnett and Deland [4] solved the problem of 
forced convection from rotating non-isothermal disks and 
cones with the intention of studying the Prandtl number effects 
on heat transfer rates. Herring and Grosh [S] studied heat 
transfer rates from a cone to air with the inclusion of buoyancy 
forces. Bergles 16, 71 classified rotation of the heat transfer 
surface as an active augmentation technique. The present 
investigation deals with a compound technique, namely 
rotation with simultaneous application of suction at the 
surface of a right vertical inverted cone, to assess the degree of 
augmentation achieved by treating the problem in its general 
form from which the special cases [l, 4,5] can be arrived at. 

FORMULATION OF THE PROBLEM 

The configuration and disposition of the rotating cone with 
the coordinate system is the same as that given in ref. [S] save 
for application of suction of a constant value at the surface of 
the cone. The dimensionless boundary-layer equations for a 
steady, non-dissipative, constant property, axisymmetric flow 

are as follows : 

Law of continuity : 

2F+H’=o. 

Conservation of momentum : 
x-direction (meridional) 

(1) 

F"-(H-~,)F'-P+G~+ 2 e = 0 ( > (2) 

y-direction (tangential) 

G”-(H-/!?JG’-2FG = 0. (3) 

Energy equation : 

8” - Pr[(H - fi,)e’ + Fe] = 0. (4) 

The following velocity, temperature and dimensionless 
spatial functions are employed to arrive at the similarity 
transformations, i.e. equations (l)-(4) : 

u = x0 sin aF(q) (5) 

v = xw sin czG(q) (6) 

w = (vo sin ~)“~[H(fl) - I,] (7) 

(T- T,) = (T,- T,)e(q) (8) 

fj = (0 sin c+)‘~~z (9) 

Gr = g cos a(T, - T,)Bx3/vz (10) 

Re = w cos ax2/v. (11) 

When /I, = 0, equations (lH4) would be identical to those 
solved by Herring and Grosh [S]. The above equations are to 


